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Abstract  

Patients affected by Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) show 

specific epigenetic and gene expression signatures of the disease. However, it is unknown whether 

these signatures include abnormal levels of the human angiotensin-converting enzymes, ACE and 

ACE2, the latter being the main receptor described for the host-cell invasion by SARS-CoV-2. To 

investigate that, we first re-analyzed available case-control epigenome-wide association studies 

based on DNA methylation data, and case-control gene expression studies based on microarray 

data. From these published studies, we found an association between ME/CFS and 4 potentially 

hypomethylated probes located in the ACE locus. We also found another disease association with 

one hypomethylated probe located in the transcription start site of ACE2. The same disease 

associations were obtained for women but not for men after performing sex-specific analyses. In 

contrast, a meta-analysis of gene expression levels could not provide evidence for a differentially 

expression of ACE and ACE2 in affected patients when compared to healthy controls. In line with 

this negative finding, the analysis of a new data set on the gene expression of ACE and ACE2 in 

peripheral blood mononuclear cells did not find any differences between a female cohort of 37 

patients and 34 age-matched healthy controls. Future studies should be conducted to extend this 

investigation to other potential receptors used by SARS-CoV-2. These studies will help researchers 

and clinicians to improve the understanding of the health risk imposed by this virus when infecting 

patients affected by this debilitating disease.   

 

Keywords: Human angiotensin converting enzymes 1/2, epigenome-wide association studies, gene 

expression studies, myalgic encephalomyelitis/chronic fatigue syndrome, SARS-CoV-2.   
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1. INTRODUCTION  

On March 11th, 2020, the World Health Organization officially declared the world to be under the 

fast-spreading pandemic of the Coronavirus disease 2019 (COVID-19) caused by the severe acute 

respiratory syndrome coronavirus-2 (SARS-CoV-2). This pandemic came in the aftermath of two 

past outbreaks of severe acute respiratory infections caused by other two human beta coronaviruses: 

the 2002/2003 Severe Acute Respiratory Syndrome (SARS) pandemic caused by SARS-CoV-1 and 

the 2012 Middle East Respiratory Syndrome (MERS) caused by MERS-CoV [1]. Since then, 

research efforts have been made to identify the molecular receptors by which the diverse 

coronaviruses are able to invade human host cells. Until now, the strongest candidate receptor is the 

human angiotensin-converting enzyme 2 (ACE2) whose interaction with the viral spike 

glycoprotein (S1) serves as a viral entry into host cells [2–4]. This enzyme is highly expressed in 

different organs, including the lungs, heart, kidneys, and skin [5–8]. Molecularly, ACE2 counteracts 

the effect of the angiotensin-converting enzyme (ACE), which results in the control of the blood 

pressure and systemic vascular resistance [9]. Failure to balance the expression of these genes is 

expected to lead to hypertension and cardiovascular diseases. Perturbation in the ACE/ACE2 ratio 

has also been hypothesized as key to the development of COVID-19 [10]. In line with these 

expectations, patients with severe symptoms of COVID-19 tend to show baseline hypertension and 

other chronic heart conditions [11–13]. To explain these clinical observations, it was hypothesized 

that these individuals could be at a higher risk of developing COVID-19 due to an upregulated 

ACE2 expression [14]. ACE2-deficient individuals also seem to be at a higher risk of COVID-19, 

because viral entry typically induces a downregulation of this enzyme, which ultimately affects its 

balance with ACE [15]. In addition, a recent meta-analysis of drugs that raise ACE2 expression 

indirectly (i.e., ACE inhibitors) provided no statistical association between these drugs and the 

mortality rate of COVID-19 [16]. Given these disparate lines of evidence, it is important to identify 

well-defined clinical populations in which ACE2 expression could be impaired. These clinical 

populations can then be used to investigate the role of this enzyme in SARS-CoV-2 infections.  

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) represent a 

neglected clinical population due to a poor recognition and limited knowledge of the disease by 

health staff and the society [17,18]. ME/CFS is a chronic disease characterized by an unexplained 

but persisting fatigue and post-exertional malaise as the hallmark symptoms among other clinical 

manifestations [19,20], which has been even associated with long-lasting COVID-19 symptoms 

[21]. The etiology of the disease remains largely unknown, but many patients report an infection at 

their symptoms’ onset [22,23]. Patients often show high prevalence of cardiovascular and 

endothelial dysfunctions, such as orthostatic intolerance, impaired blood pressure variability and 

arrhythmia [24–29]. These patients also show features of an unbalanced immune system consistent 
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with an autoimmunity origin of the disease [30]. This immune perturbation could be a possible 

explanation for the frequent viral infections or the high rate of flu-like symptoms reported by 

ME/CFS patients [31]. Interestingly, ACE levels were found to be elevated in about 80% of patients 

diagnosed with an old case definition of ME/CFS [32]. Such observation suggested this enzyme as 

a possible biomarker for the disease. As far as we know, this biomarker potential was not 

investigated in follow-up studies. In turn, little is known about the role of ACE2 in patients with 

ME/CFS.  

In the last two decades, there was an explosion of high-throughput technologies that allowed to 

interrogate the association of a large numbers of genetic variations, epigenetic changes, and altered 

gene expressions with complex diseases. Such technological developments motivated the research 

community to investigate specific epigenetic and gene expression signatures in patients with 

ME/CFS [33–35]. These investigations generated large amounts of data in which the role of ACE 

and ACE2 could be specifically assessed. The present paper then aimed to re-analyze these existing 

data in terms of ACE/ACE2 axis. With this purpose, we focused on studies comparing patients with 

ME/CFS to healthy controls (case-control study design). To strengthen existing evidence, we also 

reported the gene expression of ACE and ACE2 in a new cohort of women affected by ME/CFS and 

healthy controls. 

 

2. MATERIALS AND METHODS  

2.1 Angiotensin I converting enzymes 1 and 2 (ACE and ACE2) 

Human ACE and ACE2 are two homologous enzymes sharing 41% protein identity and 61% 

sequence similarity [36]. In more detail, ACE is a protein comprising a total of 1,306 amino acids 

(isoform 1) encoded by the ACE gene located on the q23.3 region of the chromosome 17 (genomic 

coordinates: 63,477,061-63,498,380 or 61,562,184-61,599,209 in the reference genomes hg38 and 

hg19, respectively). ACE2 is instead a protein with 805 amino acids of length encoded by the ACE2 

gene located on the p22.2 region of the X chromosome (genomic coordinates: 15,561,033-

15,602,148 or 15,579,156-15,620,271 in the reference genomes hg38 and hg19, respectively).  

 

2.2 Diagnosis of ME/CFS 

Since there is still no disease-specific biomarker, many case definitions of ME/CFS have been 

proposed over the years [37]. These case definitions are invariantly based on the symptoms reported 

by suspected patients and on the exclusion of known pathologies that could explain fatigue. To 

reduce heterogeneity between studies, we only considered data from studies using either the 1994 

Centre for Diseases Control criteria [19] or the 2003 Canadian Consensus Criteria [20]. These 

criteria are hereafter denoted as 1994 CDC/Fukuda definition and 2003 CCC, respectively. Note 
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that the choice of these two criteria is in line with the recent recommendations for research given by 

the European Network on ME/CFS [18]. 

 

2.3 Analysis of epigenome-wide association studies (EWAS) 

We focused our analysis on four available case-control EWAS on ME/CFS [38–41], which were 

reviewed elsewhere [34], and two additional case-control studies published after this review [42,43] 

(Table 1). These studies were conducted using Illumina methylation arrays with the exception of a 

single study which used the reduced representation bisulfite sequencing technology [43] (Table 1). 

We conducted a joint analysis of the four array-based studies which had the data publicly available 

in the NCBI Gene Expression Omnibus (GEO) data repository [44]. For the remaining two studies, 

we analyzed the lists of significant differentially methylated probes between patients and healthy 

controls and checked whether these lists contained any probes located in the genes of interest.   

Our analysis of the array-derived data referred to the probes located in the coding regions and the 

transcription start sites (TSS) of ACE and ACE2, respectively. In addition, we restricted our analysis 

to the probes of the Infinium HumanMethylation450K array shared with the Infinium 

HumanMethylationEPIC array: 19 probes in ACE (chromosome 17) and 8 probes in ACE2 

(chromosome X; Supplementary Table 1). We performed an initial quality control of these probes 

based on (i) their probability of detection, (ii) their cross-reactivity with other genomic regions due 

to high sequence homology, and (iii) whether their location was associated with any single 

nucleotide polymorphism (SNP) [45]. Given that these four studies were conducted in European or 

North American populations, probes were considered problematic if the associated SNPs had a 

minor allele frequency higher than 0.05 in these populations (Supplementary Table 2). All probes 

were considered non-problematic and they were included in the analysis.   

We then performed a joint analysis of the overall data from these array-based studies. Note that this 

analysis is equivalent to the so-called pooled individual-patient level data analysis that can be used 

for meta-analysis purposes [46]. For each data set, methylation signals were given by β-values 

(defined as the ratio between the methylated signal divided by the total of methylated and non-

methylated signals). To obtain a good approximation of the data to the Normal distribution, β-

values were converted into the corresponding M-values using the logit transformation [47]. To 

analyze data of each CpG probe, we initially fitted a linear regression model with the M-values as 

the outcome variable, and a study indicator variable and disease status as covariates. In this model, 

we considered the main effects plus the respective interaction terms. Note that, in this model, the 

main effect of the disease status can be seen as the pooled estimate across all studies as done in 

traditional meta-analyses. After performing parameter estimation, the model was then simplified 

using a backward stepwise procedure based on Akaike’s information criteria. Since the study 
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indicator variable was always statistically significant when analyzing data from different probes, we 

reported the evidence for association of a given probe with ME/CFS by the p-value of a likelihood 

ratio test. In this test, we compared the model including the study indicator variable only with the 

best model including that covariate and disease status (i.e., either a model including main effects 

only or a model including the main effects plus the interaction term). To adjust for multiple testing, 

we applied the Benjamini-Hochberg procedure [48] with a false discovery rate of 5% under the 

assumption of independent tests. This assumption was assessed by estimating the Pearson’s 

correlation coefficient for data of all possible pairs of probes.  

We also conducted a sex-specific analysis of the four array-based studies. Note that three of these 

studies recruited female participants only, whilst the fourth study included both men and women 

(Table 1). However, the data of this latter study available in the NBCI GEO did not include 

information about the gender of each study participant. To overcome this issue, we used the whole 

DNA methylation data to estimate the gender of each study participant using the function getSex of 

the R package minfi [49]. The estimated frequencies of men and women were in agreement with 

those reported in the original study. For the women-specific analysis, we performed the same 

association analysis as described above. For the men-specific analysis, we compared two regression 

models for the data of each probe: (i) one model including no covariates and (ii) another model 

including the disease status as the covariate. The comparison was done by a likelihood ratio test 

whose p-values were then adjusted for multiple testing as described above.  

  

2.4 Analysis of gene expression studies (GES) 

Our analysis was based on a total of eight case-control GES based on microarray technology, 

respectively (Table 2) [50–57]. These studies were based on PBMCs (5 studies), whole blood (2 

studies) and muscle biopsies (one study). There were three additional case-control GES based on 

similar technology; however, these studies used unclear case definitions of ME/CFS [58,59] or case 

definitions other than 1994 CDC/Fukuda definition or 2003 CCC [60]. In addition, there were four 

case-control GES using RNA-seq technologies [61–64]. However, they were excluded from further 

analysis due to lacking of basic quality control checks, such as the percentage of reads that could be 

mapped onto the reference transcriptome, the percentage of the transcriptome covered, the average 

number of mapped reads per transcript, any putative effect of the GC content on the mapped read 

distribution, as recommended elsewhere [65]. 

To analyze the selected microarray-based GES, we first searched for the annotation files associated 

with the technologies used. Most of these annotation files could be found in the NCBI GEO data 

repository [44]. We then used these annotation files to determine whether the respective 

microarrays included probes evaluating the expression of ACE and ACE2. We also checked whether 
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each study made its data publicly available or at least reported any differential expression of ACE or 

ACE2 genes between ME/CFS patients and healthy controls. As a qualitative assessment of the 

data, we compiled the information on whether each selected study performed any data 

normalization before inferring any differentially expressed genes. 

A re-analysis was performed in studies in which any data normalization was conducted, had the 

respective expression data available, or at least reported differential expression of ACE or ACE2 

between patients and healthy controls. In studies where the available data did not resemble a 

Gaussian distribution in linear scale, we transformed the data by finding the optimal Box-Cox 

transformation. Since the resulting data resembled a Gaussian distribution, we calculated the 

classical t-based 95% confidence interval for the average difference between patients and healthy 

controls. This confidence interval was then converted back into a linear scale using the inverse of 

the optimal Box-Cox transformation used for the data. This confidence interval was finally log2-

transformed in order to obtain the 95% confidence interval for the mean log2 fold change between 

patients and healthy controls. In studies in which the only available information was the mean log2 

fold-change and the p-value associated with a Student’s t-test for testing differentially expressed 

genes, we determined the associated standard error and then calculated the 95% confidence interval 

for the mean log2 fold change. Finally, we pooled the different estimates of the mean log2 fold 

change using the inverse-weighted variance method for meta-analysis [66]. 

 

2.5 Analysis of new RNA data on the ACE/ACE2 gene expression in ME/CFS 

2.5.1 Study participants 

Thirty-seven female patients with ME/CFS were recruited in 2020 from the outpatient clinic for 

immunodeficiencies at the Institute for Medical Immunology at the Charité-Universitätsmedizin 

Berlin, Germany. Patients with ME/CFS were diagnosed according to the 2003 CCC while 

excluding other medical or neurological diseases which may cause fatigue [20]. Thirty-four female 

controls with self-reported healthy status were recruited from staff.  

 

2.5.2 Experimental procedure for RNA isolation and expression 

PBMCs from study participants were isolated from heparinized whole blood by density gradient 

centrifugation using Biocoll Separating Solution (Merck Millipore). Total RNA was isolated from 

PBMCs (2×106 cells) was extracted (NucleoSpin RNA Kit, Macherey-Nagel, cat. nr. 740955.50) 

according to the manufacturer’s instructions. Afterwards cDNA was prepared by reverse 

transcription (High-Capacity cDNA Reverse Transcription Kit, Applied Biosystems, cat. nr. 

4368814) and real-time PCR was performed using TaqMan® Universal PCR Master Mix (cat. nr. 

4305719) and TaqMan® Gene Expression Assays (cat. nr. 4331182) for ACE (Hs00174179_m1), 
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ACE2 (Hs01085333_m1) and the housekeeping gene HPRT1 (Hs02800695_m1) (Applied 

Biosystems). For the amplification of ACE and HPRT1 20 ng and of ACE2 100 ng template cDNA 

were used. All measurements were performed with the ABI7200 and software Step One Plus as 

absolute quantification according to manufacturer’s instruction. Relative gene expression was 

analysed using the ΔCT method. Note that the expression of ACE2 mRNA was not possible to 

quantify for 11 patients due to insufficient cDNA material. Therefore, the analysis of ACE2 gene 

expression was based on data from 26 patients and 34 healthy controls. 

 

2.5.3 Statistical analysis 

We first tested whether the two groups were age-matched using the Kolgomorov-Smirnov test for 

two independent samples. For statistical convenience, raw gene expression data were independently 

transformed for ACE and ACE2 using the Box-Cox transformation. The estimates for the exponent 

of this transformation were 0.303 and 0.225 for ACE and ACE2, respectively. For each gene, a 

linear regression model was then applied to the resulting transformed data using age and disease 

status as covariates. The estimated linear regression models were then statistically validated by 

testing the normality assumption of the residuals using the Shapiro-Wilk test and by visually 

inspecting the assumption of constant variance of the same residuals as function of the covariates. 

The level of significance was set at 5% for this analysis.  

After this analysis one could consider to pool estimates of fold-changes from this study with those 

obtained from previously published array-based GES. We did not attempt to perform such meta-

analysis, because the nature of the data was very different between this study and these GES: RNA 

quantification by PCR versus intensity-based quantification, respectively. 

 

2.5.4 Ethical approval 

The protocol of the German ME/CFS cohort study was approved by the Ethics Committee of 

Charité-Universitätsmedizin Berlin in accordance with the 1964 Declaration of Helsinki and its 

later amendments (reference number EA2/067/20). All patients and healthy controls recruited from 

staff gave written informed consent. 

 

2.6 Statistical analysis and software 

We performed our statistical analysis in the R software version 4.0.3. In this analysis, we used the 

following Bioconductor packages: hgu133a.db, hgu133plus2.db, 

IlluminaHumanMethylation450kanno.ilmn12.hg19, and 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19 to retrieve the annotation of the GeneChip 

HG-U133A, GeneChip U133+2, Infinium HumanMethylation450K Array and 
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HumanMethylationEPIC arrays, respectively; minfi to estimate the sex of each individual from 

DNA methylation data [49]. 

 

3. RESULTS 

3.1 Evidence from EWAS 

In the six published EWAS, patients with ME/CFS were diagnosed using the 1994 CDC/Fukuda 

definition, the 2003 CCC, or both (Table 2). These patients were matched with healthy controls in 

terms of age, gender, and body mass index [39–41] with the exception of two studies where the 

matching was only based on the first two variables [38,43]. Trivedi et al [41] and Herrera et al [42] 

also matched for ethnicity, while the same matching could be assumed for the two other studies 

[39,40] given that these studies only recruited white females. Samples were derived from PBMCs 

[39–41], T lymphocytes [42], and CD4+ T cells [38]. Four of the six EWAS used the Infinium 

HumanMethylation450K Array by Illumina [38–40,42]. A single study was based on data generated 

from the Methylation EPIC Array [41]. Finally, the most recent study [43] used the reduced 

representation bisulfite sequencing.     

The oldest EWAS [38] did not deposit the data in any public data repository and hence, our analysis 

of this study was only based on the reported 120 probes whose percentage of DNA methylation was 

significantly different between patients with ME/CFS and healthy controls. Although located in 70 

known genes, these probes were neither located in ACE nor in ACE2.    

The remaining four array-based EWAS [39–42] made the data publicly available and, therefore, we 

conducted a joint analysis of the respective data in accordance with a meta-analysis. With this 

purpose, we focused our analysis on the 27 probes available in both Infinium 

HumanMethylation450K and HumanMethylation EPIC arrays. These probes were not considered 

problematic in terms of co-hybridization with other genomic regions according to the list. Eight out 

of these 27 probes could be mapped onto genomic regions including SNPs within either ACE or 

ACE2 genes (Supplementary Table 2). However, the associated SNPs were neither present in the 

European and North American populations nor had minor allele frequencies above 0.05 in the same 

populations (Figure 1A). Therefore, these probes were not considered problematic in this aspect. 

The joint analysis of these four studies revealed that the percentage of DNA methylation of the 27 

probes of interest were on average uncorrelated with each other (Figure 1B). This observation 

supported the use of Benjamini-Hochberg procedure for controlling the overall false discovery rate 

given that this procedure assumes independent testing. The subsequent association analysis 

identified an association between ME/CFS and 4 CpG probes located in ACE (cg09920557, 

cg19802564, cg21094739, and cg10468385; Figure 1C). The probe cg09920557 is located in the 

TSS of the gene while the remaining probes are located in the gene body. The best linear regression 
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models for these data contemplated not only the main effects of study and disease status but also the 

respective interaction (Supplementary Table 3). The interaction between study and disease could be 

visually seen when plotting the data (Figure 2A). Although not statistically significant, the 

estimated main effect of the disease status was negative for the analysis of each of these significant 

probes. This finding was in contrast with previous findings that patients with ME/CFS have a 

higher chance of possessing hypermethylated probes when compared to healthy controls [39,40]. 

With respect to ACE2, the only significant association with ME/CFS was obtained for cg08559914, 

a probe located in the TSS of this gene (Figure 1C). According to the best model for the respective 

data, this probe is negatively associated with ME/CFS (coefficient estimate= -0.141 with a standard 

error of 0.048; Figure 2B and Supplementary Table 3). Given that the degree of methylation of the 

promoter regions is typically inversely correlated with gene expression, this finding suggested a 

putative increased expression of ACE2 due to some hypomethylation of its TSS.  

We then repeated the same association analysis but for women and men separately. For women, we 

obtained similar disease associations, as described for the overall analysis (Figure 1D and 

Supplementary Table 3). For men, we did not find any statistically significant associations probably 

due to limited data from a single study (Figure 1E). Therefore, the identified associations would 

appear to be specific to women.     

Finally, the most recent EWAS was the only study that was not based on an array technology [43] 

and, as done above, our analysis consisted of analyzing the reported list of significant differentially 

methylated probes. This study reported 76 and 394 differentially methylated probes using two 

distinct statistical approaches for data analysis. These probes were located in 31 and 121 genes, 

respectively, which were neither ACE nor ACE2 (see additional file 1 from Helliwell et al [43]). 

 

3.2 Evidence from GES 

The eight array-based GES under analysis were conducted in small cohorts of patients with 

ME/CFS (mean sample size=18.5; range=4-37) and healthy controls (mean sample size=18.6; 

range=5-50 individuals) (Table 3). In these studies, the patients and healthy controls were matched 

at least in terms of age and gender. Different commercial and custom microarray technologies were 

used for the respective gene expression quantification. There was only one study in which the 

microarray used did not include any probe in the genes of interest [50]. Another study used a 

custom array based on 9,522 genes from the RefSeq database as available in August 2002 [51]. 

However, it was unclear whether the gene expression of ACE and ACE2 could have been 

quantified, because this study did not make available the list of genes included in the respective 

array. In terms of data sharing, only two studies made their data available either in the NCBI GEO 

data repository [55] or within the respective publication [53]. Although not sharing the data, there 
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was a study that reported a significant association between ME/CFS and ACE2 expression 

(log2(fold change)=0.190; 95% confidence interval=(0.021;0.359)) [56].  

We conducted a re-analysis of the two studies in which the corresponding ACE/ACE2 data was 

made available (Figure 3A). This analysis suggested a significant increase of ACE expression in 

patients with ME/CFS in data from Saiki et al [53] (mean log2(fold change)=0.470; 95% 

CI=(0.282;0.709)); this study used a custom array that consisted of stress-related genes not 

including ACE2. In opposition, the data from Gow et al [55] did not lead to any statistically 

significant result: -0.01 (95% CI=(-0.09;0.07)) and 0.00 (95% CI=(-0.08;0.07)) for probes 1 and 2 

in the ACE gene, respectively; 0.04 (95% CI=(-0.12;0.19)) and 0.04 (95% CI=(-0.07;0.15)) for 

probes 1 and 2 in the ACE2 gene, respectively (Figure 3A).  

To increase the overall statistical power to detect putative differentially expressed genes, we pooled 

the estimate from Saiki et al [53] with the ones from Gow et al [55] for the ACE expression. The 

resulting pooled estimate for the fold-change was 0.115 with a 95% CI=(-0.067;0.297) (Figure 3B). 

The same pooling of estimates was done for ACE2 expression but using the estimates from Gow et 

al [55] and the reported mean log2 fold change reported by Smith et al [56]. The pooled estimate 

was 0.074 with a 95% CI=(-0.015;0.163). Finally, the remaining array-based GES studies did not 

report any evidence for differentially expressed ACE/ACE2 genes between patients and healthy 

controls. 

 

3.3 Analysis of ACE/ACE2 gene expression in PBMCs among German participants   

To consolidate evidence from previously published studies, gene expression levels of ACE and 

ACE2 were quantified in PBMCs from 37 female patients diagnosed with ME/CFS (mean age = 

41.1 years old) and 34 female healthy individuals (mean age = 37.4 years old) (Table 3). Patients 

and healthy participants were age-matched (Kolmogorov-Smirnov test, p=0.38). Patients had an 

average disease duration of 5.4 months (range = 0–24) with four of them without information about 

this variable. 

As expected from PBMC samples, there was a higher mRNA level of ACE than of ACE2 (Table 4, 

Figure 4A). Further analysis of the transformed expression did not present any significant 

correlation between ACE and ACE2 expression levels (Spearman’s correlation coefficient = -0.120) 

(Figure 4B). Finally, linear regression models adjusted for age did not find any significant 

difference between patients and healthy controls (Table 4). 

 

4. DISCUSSION 

This research aimed to identify putative differences between patients with ME/CFS and healthy 

controls in terms of DNA methylation and gene expression of ACE and ACE2.  Initially, we 
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intended to perform similar research on current genome-wide association studies (GWAS) of 

ME/CFS [35,42,56,67,68]. However, we could not follow our original idea, because these studies 

did not make their data publicly available. With respect to these studies, evidence about the role of 

genetic factors on ACE/ACE2 is inconclusive. Two studies reported many potential candidate SNPs 

for association with ME/CFS, but none of which was located in ACE and ACE2 [56,67]. Other 

studies did not find any genetic marker across the genome to be associated with ME/CFS [35,42]. 

There was an additional GWAS reporting thousands of genetic associations with the disease [68], 

but this study did not perform all recommended quality controls [69]. 

With respect to published EWAS and GES, we could identify a female-specific association between 

ME/CFS and two potentially hypomethylated probes located in the TSS of ACE and ACE2, which 

suggests an increased expression of these genes in affected patients. However, our additional data 

set suggested that the gene expressions of ACE or ACE2 in PBMCs were similar between patients 

and healthy controls. A similar conclusion was obtained from pooling estimates from different 

GES. These inconclusive results suggested that there is currently limited data to draw more 

conclusive inferences about the role of ACE and ACE2 on ME/CFS. This data limitation is 

embodied not only in the small number of published studies, but also in the respective sample size 

used within each study, which limited the statistical power of the subsequent data analysis.  

Current data limitation in ME/CFS can be explained by five main reasons. Firstly, there were only 

few EWAS and GES available in the literature. This limited number of studies could be related to a 

poor societal recognition of ME/CFS as a disease, which ultimately limits the funding available for 

the respective research. Access to limited research funding could also imply an additional difficulty 

in assembling multidisciplinary teams required to tackle the various challenging technical aspects of 

these studies.  

Secondly, three published case-control GES based on microarray technology were excluded from 

this investigation, because they used broad or alternative case definitions of ME/CFS. Given the 

absence of an objective disease biomarker, the research community should aim to use consensual 

case definitions for research with the intention to make disease diagnostics comparable across 

studies while reducing heterogeneity between studies. In this regard, our requirement for ME/CFS 

diagnosis was the 1994 CDC/Fukuda definition or the 2003 CCC according to the recommendation 

for research given by the European Network on ME/CFS [18].  

Thirdly, four RNA-seq studies were not included in our investigation due to unclear data quality. 

Issues concerning data quality is not an exclusive problem of ME/CFS studies, as highlighted by a 

comprehensive survey of the analytical steps taken by current RNA-seq studies [70]. In theory, 

there are several recommended steps for data processing and analysis for these studies [65]. In 

practice, different studies adopt distinct pipelines for data analysis with a possible impact on 
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scientific reproducibility [70]. Again, a way to reduce between-study heterogeneity and to improve 

the respective data quality is to foster a stronger collaboration between ME/CFS researchers and 

bioinformaticians who have the technical competencies to conduct the correct processing of the data 

and the subsequent statistical analysis, as advised for the analysis of GWAS [69]. Notwithstanding 

the exclusion of the RNA-seq studies from this research, it is worth noting that none of them 

reported any difference between patients and healthy controls in terms of ACE/ACE2 expression 

levels [61–64]. These findings are in agreement with the results obtained from our gene expression 

analysis for ACE/ACE2 in German ME/CFS patients and healthy controls.   

Fourthly, only a few of the published studies made their data publicly available. This issue was 

particularly limiting for a specific analysis of current GWAS, because none of these studies 

deposited the data in any open-access data repository. Currently, many funders and other science-

related stakeholders are supporting the reuse and the long-term maintenance of scientific data 

generated by publicly funded research [71]. Above all, the benefit of a wide data-sharing practice is 

expected to accelerate scientific knowledge and to boost confidence in findings by allowing other 

researchers to take an alternative look at the same data. It could also promote collaboration among 

researchers, and to make science open to everyone, specifically, when it is funded by taxpayers and 

charities. Data sharing is also essential to cut down the costs of research by sharing resources 

among the research community. Reducing the costs of research by sharing limited resources is 

particularly important for the underfunded ME/CFS research field, as alluded above. 

Fifthly, the re-analysis of publicly available data was based on small cohorts of patients and healthy 

controls. In general, a small sample size limits the statistical power to detect any hypothetical 

differences between patients with ME/CFS and healthy controls. This issue is particularly 

problematic for GWAS, EWAS and GES, whose statistical analysis typically involves the execution 

of thousands of association tests. In the case of GWAS, the number of association tests could even 

reach several million, as illustrated by Herrera et al [42]. Therefore, if correcting multiple testing is 

taken into account in the analysis, the most likely finding is the identification of relatively few 

disease associations, as demonstrated by Smith et al [56]. In the worst-case scenario, correcting for 

multiple testing in studies with small sample sizes leads to the absence of evidence for any disease 

association, as reported by different studies [35,42,72]. In the most optimistic scenario, we can 

hypothesize that ACE and ACE2 are both genes whose genetic variation and gene expression 

profiles are at best moderately associated with ME/CFS. However, this prediction is yet to be 

confirmed with future studies investigating the specific role of these genes on patients with 

ME/CFS infected with SARS-CoV-2.  

Given the high frequency of cardiovascular dysfunctions in patients with ME/CFS [24–29], it is 

also possible that the available DNA methylation and gene expression data could be biased towards 
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study participants who were taking any medication to restore their normal cardiovascular function. 

In this regard, only one study excluded putative study participants taking any beta-blockers or ACE 

inhibitors [41]. Other studies excluded any potential participants with previous consumption of 

medications with immunomodulatory effects or with putative effects on epigenetic mechanisms 

[39,40,42], excluded any putative participant taking any regular medication [55], or reported that 

the healthy controls were free from any medication at the time of data collection [53]. One study 

conducted a review of current medications taken by the study participants [56]. However, it was 

unclear which medications were considered as exclusionary criteria.       

Another cautionary note is that, for experimental convenience, gene expression and DNA 

methylation data sets were mostly derived from PBMCs and, as such, they may not reflect what 

occurs in nasal and pulmonary epithelial and endothelial cells, which are the main cellular targets of 

SARS-CoV-2 [73]. Interestingly, earlier studies on SARS-CoV-1 found the virus within T 

lymphocytes, macrophages, and monocyte-derived dendritic cells [74]. In the same line of evidence 

is the observation of lymphopenia in the blood of patients infected by SARS-CoV-2 [75,76]. It is 

then possible that SARS-CoV-2 also infects different immune cell subsets present in the blood. If 

so, the infection of PBMCs by this virus could open the door for a widespread of the infection to 

different organs. However, it is worth noting that, even if PBMCs are in fact infected by the SARS-

CoV-2, it is unclear whether the virus uses the same invasion route via interaction with ACE2. 

Previously, some authors hypothesized that patients with chronic conditions, such as those with 

hypertension, diabetes mellitus, or chronic obstructive respiratory disease, could be more 

susceptible to COVID-19 due to a putative upregulation of the ACE2 gene [14]. A subsequent study 

could not confirm this hypothesis by analyzing the expression profiles of ACE2 and other gene 

targets of SARS-CoV-2 in the lungs of these chronic patients [15]. However, this study failed to 

acknowledge a possible effect of the underlying genetic variation associated with ACE2 in the 

respective results. In fact, a recent study showed a clear continental difference between different 

human populations based on ACE2 polymorphisms alone [77]. Therefore, it is conceivable that 

different human populations could have a natural variation in the SARS-CoV-2 infectivity rate due 

to specific genetic variations in ACE2 that can increase the binding affinity between ACE2 and the 

S1 protein encoded by SARS-CoV-2. In line with this view, a bioinformatic analysis suggested that 

specific ACE2-related SNPs are able to stabilize the interaction between ACE2 and the S1 protein 

of SARS-CoV-2 [78]. Given that genetic variation in ACE2 is typically associated with 

cardiovascular diseases and there is currently no evidence for such genetic association with 

ME/CFS, we hypothesize that patients with ME/CFS have the same SARS-CoV-2 infectivity rate as 

any healthy individual on the basis of the ACE2 data alone. On the other hand, it is known that 

patients with ME/CFS tend to have perturbations of the immune system with unresponsive natural 
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killer cells upon antigen stimulation [79], defective B and T cell immune responses against the 

Epstein-Barr virus [80], decreased CD8+ T-cell cytotoxicity and activation [81], and increased 

percentage of regulatory T cells [82,83]. All of these clinical observations are possible reasons for 

frequent and persistent infections reported by some patients with ME/CFS [31]. Given all of these 

observations, a recent study suggested that the pathology of ME/CFS could be related to a hyper-

regulated immune system via regulatory T cells [84]. As a corollary of this hypothesis, some 

patients with ME/CFS could have an increased SARS-CoV-2 infectivity rate not due to any 

underlying imbalanced expression of ACE2, but rather than due to a hypo-responsive (or hyper-

regulated) immune system. 

It is worth noting that the invasion of host cells by SARS-CoV-2 requires more than the simple 

interaction of the viral S1 protein with ACE2. Previously, it was found that SARS-CoV-1 interacts 

with the human transmembrane protease serine 2 (TMPRSS2) for its activation and its role of 

priming host cells for viral entry [85,86]. A similar interaction was hypothesized for SARS-CoV-2 

infectivity [73]. In addition, TMPRSS2 is thought to induce SARS-CoV-1 cell entry through 

endocytosis via a mechanism of ACE2 cleavage, as reviewed elsewhere [87]. Similar mechanisms 

might occur in SARS-CoV-2 infections [4]. Another reported human protease potentially 

influencing SARS-CoV-2 infectivity is the A disintegrin and metallopeptidase domain 17 protein 

(ADAM17), which has an important role as a stress-response signal delivered to the immune system 

[88]. Like TMPRSS2, this protease coud also cleave ACE2, but with a different end-product [89]. 

As a consequence, the viral invasion seems less efficient in host cells whose ACE2 was 

preferentially cleaved by this protease than by TMPRSS2 [89]. At this moment, there is limited 

evidence for the role of these two proteases in the pathogenesis of ME/CFS. In this regard, one of 

the GES conducted a small gene expression study on different stress-response proteins including 

ADAM17 [53]. These authors did not find any significant difference in the expression of this 

protease between patients with ME/CFS and healthy controls. In addition, one of the EWAS 

provided evidence for hypomethylation of one ADAM17-related probe in patients with ME/CFS 

when compared to healthy controls [41]. Therefore, the analyses conducted here for ACE2 alone 

could serve as a guideline for future studies on these proteases related to SARS-CoV-2 infection.  

Dipeptidyl peptidase-4 (DPP4), also known as lymphocyte cell surface protein CD26, was found to 

be the main functional receptor for the host-cell entry by MERS [90,91]. This molecule is highly 

expressed in PBMCs including CD4+ and CD8+ T cells [8]. It is then possible that SARS-CoV-2 

could infect PBMCs via a route involving DPP4 rather than ACE2. Interestingly, a study reported 

an increased proportion of natural killers and T cells expressing DPP-4/CD26+ in patients with CFS 

when compared to healthy controls [79]. A follow-up study confirmed this finding but also showed 

evidence for a decreased number of CD26 molecules in T lymphocytes and natural killer cells of 
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patients with ME/CFS [92]. The same study suggested a decreased level of the soluble form of the 

molecule in the serum from patients. A similar observation was found in a recent study, but 

specifically for female patients whose disease was initiated after an infection [93]. Therefore, 

perturbations of the normal levels of DPP4 would appear to be a hallmark of ME/CFS pathogenesis. 

If DPP4 is indeed an alternative receptor for immune-cell invasion by SARS-CoV-2, specific 

research is needed to determine the infectivity rate of PBMCs from patients with ME/CFS. This 

would allow to determine the susceptibility of these patients to infections by SARS-CoV-2. 

 

5. CONCLUSIONS  

There is limited evidence for an altered expression of ACE and ACE2 in PBMCs from patients 

affected by ME/CFS. At this stage, we could not rule out the hypothesis that patients and healthy 

controls alike could have the same infectivity rate of their PBMCs and other target cells by SARS-

CoV-2. To investigate this hypothesis, further data should be analyzed, namely, on different human 

receptors (i.e., DPP4) that the virus can use to invade different host cells. In this regard, analyzing 

samples from the UK ME/CFS biobank [94,95] is a potential research avenue due to its large 

sample size, extensive clinical characterization of the respective study participants, and robust 

ethics.   
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Figures Captions: 

 

Figure 1 

DNA methylation analysis of 19 and 8 CpG probes located in the ACE and ACE2 genes, 

respectively. (A) Minor allele frequency in European and North American populations of SNPs 

located in the probes under analysis (see the respective data in Supplementary Table 2). (B) Boxplot 

of all possible Pearson’s correlation coefficients (y axis) between the M-values of the probes under 

analysis. Horizontal dashed line represents the situation of lack of correlation.  (C) Adjusted p-

values for the overall association between each probe and ME/CFS. Adjusted p-values were 

calculated according to the Benjamini-Hochberg procedure with a false discovery rate of 5% 

(dashed line). Grey areas in the plots represent the TSS of the genes. (D) and (E) The same analyses 

as shown in C but for women and men separately.  

 

Figure 2 

Boxplots per study, group and gender of the M-values referring to probes identified in Figures 1C 

and 1D. (A) Significant probes located in ACE. (B) Significant probe located in ACE2. 

 

Figure 3 

Analysis of ACE/ACE2-related data from eligible microarray-based GES. (A) Boxplots of the data 

from studies based on microarray technology. (B) Forest plot for the study-specific and pooled 

estimate of the mean log2 fold change between patients with ME/CFS and healthy controls using 

data shown in A. 

 

Figure 4 

Analysis of ACE and ACE2 gene expression from the German study. (A) Violin plots of ACE (left 

side) and ACE2 (right side) mRNA raw data (upper row) and transformed data using the best Box-

Cox transformation (lower row). Green-filled plots represent the cohort of healthy controls and 

rose-filled plots represent the ME/CFS-diagnosed patients. The best values for the Box-Cox 

transformation parameter λ are 0.303 and 0.225 for ACE and ACE2 mRNA data, respectively. (B) 

Scatterplot between ACE and ACE2 gene expression using the Box-Cox-transformed data 

(Spearman’s correlation coefficient = -0.120). 
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Table 1 

Summary of the six EWAS under analysis.  

Reference Sample type 
ME/CFS patients Healthy 

controls, n 
Technology (manufacturer) 

NCBI GEO 

Accession number n Sample characteristics Case definition 

[38] CD4+ T cells 25 

Female/male adults 

Mean age: 50 years old 

Mean BMI: not reported 

1994 CDC/Fukuda 18 

Infinium  

HumanMethylation450K Array 

(Illumina) 

NA 

[39] PBMC 12 

Female adults 

Mean age: 41 years old 

Mean BMI: 23 kg/m2 

1994 CDC/Fukuda & 

2003 CCC 
12 

Infinium  

HumanMethylation450K Array 

(Illumina) 

GSE59489 

[40] PBMC 49 

Female adults 

Mean age: 50 years old; 

Mean BMI: 23 kg/m2 

1994 CDC/Fukuda 

&2003 CCC 
25 

Infinium HumanMethylation450 

Array (Illumina) 
GSE93266 

[41] PBMC 13 

Female adults 

Mean age: 50 years old 

Mean BMI:  26 kg/m2 

1994 CDC/Fukuda & 

2003 CCC 
12 

Methylation EPIC Array 

(Illumina) 
GSE111183 

[42] 
T 

lymphocytes 
61 

Female/male adults 

Mean age: 32 years old 

Mean BMI: 27 kg/m2 

1994 CDC/Fukuda & 

2003 CCC 
48 

Infinium  

HumanMethylation450K Array 

(Illumina) 

GSE156792 

[43] PBMC 10 

Female/male adults 

Mean age: Not reported 

Mean BMI: not reported 

2003 CCC 10 
Reduced representation Bisulfite 

sequencing 
GSE153667 
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 Table 2 

Summary of the 8 array-based GES under analysis, ordered by year of publication.  
  ME/CFS patients     

Reference Sample type n Sample characteristics Case definition 
Healthy 

controls, n 
Technology 

(Manufacturer) 
ACE/ACE2 
available 

Data availability 
(NCBI GEO Assession 

number) 

[50] PBMCs 5 
Female adults 

Mean age: 42 years old 
Mean BMI: not reported 

1994 
CDC/Fukuda 

5 
Atlas Glass Human 3.8 I 

Microarray (BD 
Biosciences Clontech) 

No/No No (NA) 

[51] PBMCs 25 
Female/male adults 

Mean age: 41 years old 
Mean BMI: not reported 

1994 
CDC/Fukuda 

25 Custom microarray 
(Nimblegen) 

Unclear No (NA) 

[52] Whole blood 25 
Female/male adults 

Mean age: 43 years old 
Mean BMI: not reported 

1994 
CDC/Fukuda 50 

GeneChip Human 
Genome U133 Plus 2.0 

(Affymetrix) 
Yes/ Yes No (NA) 

[53] Whole blood 11 
Female/male adults 

Mean age: 34 years old 
Mean BMI: 20.3 kg/m2 

1994 
CDC/Fukuda 

11 
Custom microarray 

(NA) 
Yes/No Yes (NA)a 

[54] 
Muscle 
biopsies 

4 
Female/male adults 

Mean age: 45/37 years old 
Mean BMI: not reported 

1994 
CDC/Fukuda 

5 
Operon V2.0 

(CRIBI University of 
Padova) 

Yes/Yes No (NA) 

[55] PBMCs 8 
Male adults 

Median age: 36 years old 
Mean BMI: not reported 

1994 
CDC/Fukuda 

7 
GeneChip Human 

Genome U133 
(Affymetrix) 

Yes/ Yes Yes (GSE14577) 

[56] PBMCs 37 
Female/male adults 

Mean age: 51 years old 
Mean BMI:29.4 kg/m2 

1994 
CDC/Fukuda 25 

MWG 20K human Array 
(Biotech MWG) Yes/ Yes No (NA) 

[57] PBMCs 33 
Female/male adults 

Mean age: not reported 
Mean BMI: not reported 

1994 
CDC/Fukuda 

21 
GeneChip Human Gene 

ST (Affymetrix) 
Yes/No No (NA) 

a Data shared as a supplementary file in the online version of the study.  
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Table 3 

Summary statistics for the gene expression of ACE and ACE2 from the German female study 

participants where data of ACE2 were only available for 26 affected patients. 

 

Summary statistic Healthy controls ME/CFS patients 

N 34 37 

Mean age (range), years 37.4 (23; 65) 41.1 (19; 60) 

Mean disease duration 

since diagnostic (range), months 
NA 5.4 (0; 24) 

   

ACE   

Geometric mean 0.153 0.144 

Interquartile range 0.087 0.073 

ACE2a   

Geometric mean 0.002 0.001 

Interquartile range 0.005 0.004 
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Table 4 

Analysis of the linear regression models for the Box-Cox-transformed ACE and ACE2 mRNA 

levels where data were only available for 26 ME/CFS patients. 

  

Analysis Estimate (SE) P-value 

Box-Cox transformed ACE   

(Intercept) 0.541 (0.032) <0.001 

Age 0.001 (0.001) 0.328 

Disease Status (ME/CFS) -0.013 (0.018) 0.481 

Box-Cox transformed ACE2   

(Intercept) 0.307 (0.038) <0.001 

Age -0.001 (0.001) 0.137 

Disease Status (ME/CFS) -0.006 (0.021) 0.789 
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